Tag Archives: Publications

Google at NeurIPS 2018



This week, Montréal hosts the 32nd annual Conference on Neural Information Processing Systems (NeurIPS 2018), the biggest machine learning conference of the year. The conference includes invited talks, demonstrations and presentations of some of the latest in machine learning research. Google will have a strong presence at NeurIPS 2018, with more than 400 Googlers attending in order to contribute to, and learn from, the broader academic research community via talks, posters, workshops, competitions and tutorials. We will be presenting work that pushes the boundaries of what is possible in language understanding, translation, speech recognition and visual & audio perception, with Googlers co-authoring nearly 100 accepted papers (see below).

At the forefront of machine learning, Google is actively exploring virtually all aspects of the field spanning both theory and applications. This research is often inspired by real product needs but increasingly more often driven by scientific curiosity. Given the range of research projects that we pursue, we have found it useful to define a new framework which helps crystalize the goals of projects and allows us to measure progress and success in appropriate ways. Our contributions to NeurIPS and to the broader research community in general are integral to our research mission.

If you are attending NeurIPS 2018, we hope you’ll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving the world's most challenging research problems, and to see demonstrations of some of the exciting research we pursue. You can also learn more about our work being presented in the list below (Googlers highlighted in blue).

Google is a Platinum Sponsor of NeurIPS 2018.

NeurIPS Foundation Board
Corinna Cortes, John C. Platt, Fernando Pereira

NeurIPS Organizing Committee
General Chair: Samy Bengio
Program Co-Chair: Hugo Larochelle
Party Chair: Douglas Eck
Diversity and Inclusion Co-Chair: Katherine A. Heller

NeurIPS Program Committee
Senior Area Chairs include:Angela Yu, Claudio Gentile, Cordelia Schmid, Corinna Cortes, Csaba Szepesvari, Dale Schuurmans, Elad Hazan, Mehryar Mohri, Raia Hadsell, Satyen Kale, Yishay Mansour, Afshin Rostamizadeh, Alex Kulesza

Area Chairs include: Amin Karbasi, Amir Globerson, Amit Daniely, Andras Gyorgy, Andriy Mnih, Been Kim, Branislav Kveton, Ce Liu, D Sculley, Danilo Rezende, Danny TarlowDavid Balduzzi, Denny Zhou, Dilan Gorur, Dumitru Erhan, George Dahl, Graham Taylor, Ian Goodfellow, Jasper Snoek, Jean-Philippe Vert, Jia Deng, Jon Shlens, Karen Simonyan, Kevin Swersky, Kun Zhang, Lihong Li, Marc G. Bellemare, Marco Cuturi, Maya Gupta, Michael BowlingMichalis Titsias, Mohammad Norouzi, Mouhamadou Moustapha Cisse, Nicolas Le Roux, Remi Munos, Sanjiv Kumar, Sanmi Koyejo, Sergey Levine, Silvia Chiappa, Slav PetrovSurya Ganguli, Timnit Gebru, Timothy Lillicrap, Viren Jain, Vitaly Feldman, Vitaly Kuznetsov

Workshops Program Committee includes: Mehryar Mohri, Sergey Levine

Accepted Papers
3D-Aware Scene Manipulation via Inverse Graphics
Shunyu Yao, Tzu Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, William T. Freeman, Joshua B. Tenenbaum

A Retrieve-and-Edit Framework for Predicting Structured Outputs
Tatsunori Hashimoto, Kelvin Guu, Yonatan Oren, Percy Liang

Adversarial Attacks on Stochastic Bandits
Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu

Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian Goodfellow, Jascha Sohl-Dickstein

Adversarially Robust Generalization Requires More Data
Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry

Are GANs Created Equal? A Large-Scale Study
Mario Lucic, Karol Kurach, Marcin Michalski, Olivier Bousquet, Sylvain Gelly

Collaborative Learning for Deep Neural Networks
Guocong Song, Wei Chai

Completing State Representations using Spectral Learning
Nan Jiang, Alex Kulesza, Santinder Singh

Content Preserving Text Generation with Attribute Controls
Lajanugen Logeswaran, Honglak Lee, Samy Bengio

Context-aware Synthesis and Placement of Object Instances
Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz

Co-regularized Alignment for Unsupervised Domain Adaptation
Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerlo Feris, William T. Freeman, Gregory Wornell

cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, H. Brendan Mcmahan

Data Center Cooling Using Model-Predictive Control
Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, Greg Imwalle

Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

Deep Attentive Tracking via Reciprocative Learning
Shi Pu, Yibing Song, Chao Ma, Honggang Zhang, Ming-Hsuan Yang

Generalizing Point Embeddings Using the Wasserstein Space of Elliptical Distributions
Boris Muzellec, Marco Cuturi

GLoMo: Unsupervised Learning of Transferable Relational Graphs
Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking
Patrick Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh

Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang, Armando Solar-Lezama, Rishabh Singh

Learning Hierarchical Semantic Image Manipulation through Structured Representations
Seunghoon Hong, Xinchen Yan, Thomas Huang, Honglak Lee

Learning Temporal Point Processes via Reinforcement Learning
Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, Le Song

Learning Towards Minimum Hyperspherical Energy
Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song

Mesh-TensorFlow: Deep Learning for Supercomputers
Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, Blake Hechtman

MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare
Edward Choi, Cao Xiao, Walter F. Stewart, Jimeng Sun

Searching for Efficient Multi-Scale Architectures for Dense Image Prediction
Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam, Jonathon Shlens

SplineNets: Continuous Neural Decision Graphs
Cem Keskin, Shahram Izadi

Task-Driven Convolutional Recurrent Models of the Visual System
Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. K. Yamins

To Trust or Not to Trust a Classifier
Heinrich Jiang, Been Kim, Melody Guan, Maya Gupta

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
Ye Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu

Algorithms and Theory for Multiple-Source Adaptation
Judy Hoffman, Mehryar Mohri, Ningshan Zhang

A Lyapunov-based Approach to Safe Reinforcement Learning
Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, Mohammad Ghavamzadeh

Adaptive Methods for Nonconvex Optimization
Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, Sanjiv Kumar

Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly

A Loss Framework for Calibrated Anomaly Detection
Aditya Menon, Robert Williamson

Blockwise Parallel Decoding for Deep Autoregressive Models
Mitchell Stern, Noam Shazeer, Jakob Uszkoreit

Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Qiang Liu, Lihong Li, Ziyang Tang, Dengyong Zhou

Contextual Pricing for Lipschitz Buyers
Jieming Mao, Renato Leme, Jon Schneider

Coupled Variational Bayes via Optimization Embedding
Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song

Data Amplification: A Unified and Competitive Approach to Property Estimation
Yi HAO, Alon Orlitsky, Ananda Theertha Suresh, Yihong Wu

Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, Cristian Sminchisescu

Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation
Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wei Liu, Ming-Hsuan Yang

Diminishing Returns Shape Constraints for Interpretability and Regularization
Maya Gupta, Dara Bahri, Andrew Cotter, Kevin Canini

DropBlock: A Regularization Method for Convolutional Networks
Golnaz Ghiasi, Tsung-Yi Lin, Quoc V. Le

Generalization Bounds for Uniformly Stable Algorithms
Vitaly Feldman, Jan Vondrak

Geometrically Coupled Monte Carlo Sampling
Mark Rowland, Krzysztof Choromanski, Francois Chalus, Aldo Pacchiano, Tamas Sarlos, Richard E. Turner, Adrian Weller

GILBO: One Metric to Measure Them All
Alexander A. Alemi, Ian Fischer

Insights on Representational Similarity in Neural Networks with Canonical Correlation
Ari S. Morcos, Maithra Raghu, Samy Bengio

Improving Online Algorithms via ML Predictions
Manish Purohit, Zoya Svitkina, Ravi Kumar

Learning to Exploit Stability for 3D Scene Parsing
Yilun Du, Zhijan Liu, Hector Basevi, Ales Leonardis, William T. Freeman, Josh Tenembaum, Jiajun Wu

Maximizing Induced Cardinality Under a Determinantal Point Process
Jennifer Gillenwater, Alex Kulesza, Sergei Vassilvitskii, Zelda Mariet

Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing
Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, Ni Lao

PCA of High Dimensional Random Walks with Comparison to Neural Network Training
Joseph M. Antognini, Jascha Sohl-Dickstein

Predictive Approximate Bayesian Computation via Saddle Points
Yingxiang Yang, Bo Dai, Negar Kiyavash, Niao He

Recurrent World Models Facilitate Policy Evolution
David Ha, Jürgen Schmidhuber

Sanity Checks for Saliency Maps
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, Been Kim

Simple, Distributed, and Accelerated Probabilistic Programming
Dustin Tran, Matthew Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul, Matthew Johnson, Rif A. Saurous

Tangent: Automatic Differentiation Using Source-Code Transformation for Dynamically Typed Array Programming
Bart van Merriënboer, Dan Moldovan, Alex Wiltschko

The Emergence of Multiple Retinal Cell Types Through Efficient Coding of Natural Movies
Samuel A. Ocko, Jack Lindsey, Surya Ganguli, Stephane Deny

The Everlasting Database: Statistical Validity at a Fair Price
Blake Woodworth, Vitaly Feldman, Saharon Rosset, Nathan Srebro

The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural Network
Jeffrey Pennington, Pratik Worah

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin

Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language
Matthew D. Hoffman, Matthew Johnson, Dustin Tran

A Bayesian Nonparametric View on Count-Min Sketch
Diana Cai, Michael Mitzenmacher, Ryan Adams (no longer at Google)

Automatic Differentiation in ML: Where We are and Where We Should be Going
Bart van Merriënboer, Olivier Breuleux, Arnaud Bergeron, Pascal Lamblin

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov, Adam Santoro, Blake A. Richards, Geoffrey E. Hinton, Timothy P. Lillicrap

Deep Generative Models for Distribution-Preserving Lossy Compression
Michael Tschannen, Eirikur Agustsson, Mario Lucic

Deep Structured Prediction with Nonlinear Output Transformations
Colin Graber, Ofer Meshi, Alexander Schwing

Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning
Supasorn Suwajanakorn, Noah Snavely, Jonathan Tompson, Mohammad Norouzi

Transfer Learning with Neural AutoML
Catherine Wong, Neil Houlsby, Yifeng Lu, Andrea Gesmundo

Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses
Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Dmitry Storcheus, Scott Yang

Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification
Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru

Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization
Blake Woodworth, Jialei Wang, Brendan McMahan, Nathan Srebro

Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies
Sungryull Sohn, Junhyuk Oh, Honglak Lee

Human-in-the-Loop Interpretability Prior
Isaac Lage, Andrew Slavin Ross, Been Kim, Samuel J. Gershman, Finale Doshi-Velez

Joint Autoregressive and Hierarchical Priors for Learned Image Compression
David Minnen, Johannes Ballé, George D Toderici

Large-Scale Computation of Means and Clusters for Persistence Diagrams Using Optimal Transport
Théo Lacombe, Steve Oudot, Marco Cuturi

Learning to Reconstruct Shapes from Unseen Classes
Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu

Large Margin Deep Networks for Classification
Gamaleldin Fathy Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, Samy Bengio

Mallows Models for Top-k Lists
Flavio Chierichetti, Anirban Dasgupta, Shahrzad Haddadan, Ravi Kumar, Silvio Lattanzi

Meta-Learning MCMC Proposals
Tongzhou Wang, YI WU, Dave Moore, Stuart Russell

Non-delusional Q-Learning and Value-Iteration
Tyler Lu, Dale Schuurmans, Craig Boutilier

Online Learning of Quantum States
Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, Ashwin Nayak

Online Reciprocal Recommendation with Theoretical Performance Guarantees
Fabio Vitale, Nikos Parotsidis, Claudio Gentile

Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
Rad Niazadeh, Tim Roughgarden, Joshua R. Wang

Policy Regret in Repeated Games
Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, Mehryar Mohri

Provable Variational Inference for Constrained Log-Submodular Models
Josip Djolonga, Stefanie Jegelka, Andreas Krause

Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, Ian J. Goodfellow

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee

Visual Object Networks: Image Generation with Disentangled 3D Representations
JunYan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, William T. Freeman

Watch Your Step: Learning Node Embeddings via Graph Attention
Sami Abu-El-Haija, Bryan Perozzi, Rami AlRfou, Alexander Alemi

Workshops
2nd Workshop on Machine Learning on the Phone and Other Consumer Devices
Co-Chairs include: Sujith Ravi, Wei Chai, Hrishikesh Aradhye

Bayesian Deep Learning
Workshop Organizers include: Kevin Murphy

Continual Learning
Workshop Organizers include: Marc Pickett

The Second Conversational AI Workshop – Today's Practice and Tomorrow's Potential
Workshop Organizers include: Dilek Hakkani-Tur

Visually Grounded Interaction and Language
Workshop Organizers include: Olivier Pietquin

Workshop on Ethical, Social and Governance Issues in AI
Workshop Organizers include: D. Sculley

AI for Social Good
Workshop Program Committee includes: Samuel Greydanus

Black in AI
Workshop Organizers: Mouhamadou Moustapha Cisse, Timnit Gebru
Program Committee: Irwan Bello, Samy Bengio, Ian Goodfellow, Hugo Larochelle, Margaret Mitchell

Interpretability and Robustness in Audio, Speech, and Language
Workshop Organizers include: Ehsan Variani, Bhuvana Ramabhadran

LatinX in AI
Workshop Organizers includes: Pablo Samuel Castro
Program Committee includes: Sergio Guadarrama

Machine Learning for Systems
Workshop Organizers include: Anna Goldie, Azalia Mirhoseini, Kevin Swersky, Milad Hashemi
Program Committee includes: Simon Kornblith, Nicholas Frosst, Amir Yazdanbakhsh, Azade Nazi, James Bradbury, Sharan Narang, Martin Maas, Carlos Villavieja

Queer in AI
Workshop Organizers include: Raphael Gontijo Lopes

Second Workshop on Machine Learning for Creativity and Design
Workshop Organizers include: Jesse Engel, Adam Roberts

Workshop on Security in Machine Learning
Workshop Organizers include: Nicolas Papernot

Tutorial
Visualization for Machine Learning
Fernanda Viégas, Martin Wattenberg

Source: Google AI Blog


Google at EMNLP 2018



This week, the annual conference on Empirical Methods in Natural Language Processing (EMNLP 2018) will be held in Brussels, Belgium. Google will have a strong presence at EMNLP with several of our researchers presenting their research on a diverse set of topics, including language identification, segmentation, semantic parsing and question answering, additionally serving in various levels of organization in the conference. Googlers will also be presenting their papers and participating in the co-located Conference on Computational Natural Language Learning (CoNLL 2018) shared task on multilingual parsing.

In addition to this involvement, we are sharing several new datasets with the academic community that are released with papers published at EMNLP, with the goal of accelerating progress in empirical natural language processing (NLP). These releases are designed to help account for mismatches between the datasets a machine learning model is trained and tested on, and the inputs an NLP system would be asked to handle “in the wild”. All of the datasets we are releasing include realistic, naturally occurring text, and fall into two main categories: 1) challenge sets for well-studied core NLP tasks (part-of-speech tagging, coreference) and 2) datasets to encourage new directions of research on meaning preservation under rephrasings/edits (query well-formedness, split-and-rephrase, atomic edits):
  • Noun-Verb Ambiguity in POS Tagging Dataset: English part-of-speech taggers regularly make egregious errors related to noun-verb ambiguity, despite high accuracies on standard datasets. For example: in “Mark which area you want to distress” several state-of-the-art taggers annotate “Mark” as a noun instead of a verb. We release a new dataset of over 30,000 naturally occurring non-trivial annotated examples of noun-verb ambiguity. Taggers previously indistinguishable from each other have accuracies ranging from 57% to 75% accuracy on this challenge set.
  • Query Wellformedness Dataset: Web search queries are usually “word-salad” style queries with little resemblance to natural language questions (“barack obama height” as opposed to “What is the height of Barack Obama?”). Differentiating a natural language question from a query is of importance to several applications include dialogue. We annotate and release 25,100 queries from the open-source Paralex corpus with ratings on how close they are to well-formed natural language questions.
  • WikiSplit: Split and Rephrase Dataset Extracted from Wikipedia Edits: We extract examples of sentence splits from Wikipedia edits where one sentence gets split into two sentences that together preserve the original meaning of the sentence (E.g. “Street Rod is the first in a series of two games released for the PC and Commodore 64 in 1989.” is split into “Street Rod is the first in a series of two games.” and “It was released for the PC and Commodore 64 in 1989.”) The released corpus contains one million sentence splits with a vocabulary of more than 600,000 words. 
  • WikiAtomicEdits: A Multilingual Corpus of Atomic Wikipedia Edits: Information about how people edit language in Wikipedia can be used to understand the structure of language itself. We pay particular attention to two atomic edits: insertions and deletions that consist of a single contiguous span of text. We extract around 43 million such edits in 8 languages and show that they provide valuable information about entailment and discourse. For example, insertion of “in 1949” adds a prepositional phrase to the sentence “She died there after a long illness” resulting in “She died there in 1949 after a long illness”.
These datasets join the others that Google has recently released, such as Conceptual Captions and GAP Coreference Resolution in addition to our past contributions.

Below is a full list of Google’s involvement and publications being presented at EMNLP and CoNLL (Googlers highlighted in blue). We are particularly happy to announce that the paper “Linguistically-Informed Self-Attention for Semantic Role Labeling” was awarded one of the two Best Long Paper awards. This work was done by our 2017 intern Emma Strubell, Googlers Daniel Andor, David Weiss and Google Faculty Advisor Andrew McCallum. We congratulate these authors, and all other researchers who are presenting their work at the conference.

Area Chairs Include:
Ming-Wei Chang, Marius Pasca, Slav Petrov, Emily Pitler, Meg Mitchell, Taro Watanabe

EMNLP Publications
A Challenge Set and Methods for Noun-Verb Ambiguity
Ali Elkahky, Kellie Webster, Daniel Andor, Emily Pitler

A Fast, Compact, Accurate Model for Language Identification of Codemixed Text
Yuan Zhang, Jason Riesa, Daniel Gillick, Anton Bakalov, Jason Baldridge, David Weiss

AirDialogue: An Environment for Goal-Oriented Dialogue Research
Wei Wei, Quoc Le, Andrew Dai, Jia Li

Content Explorer: Recommending Novel Entities for a Document Writer
Michal Lukasik, Richard Zens

Deep Relevance Ranking using Enhanced Document-Query Interactions
Ryan McDonald, George Brokos, Ion Androutsopoulos

HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, Christopher D. Manning

Identifying Well-formed Natural Language Questions
Manaal Faruqui, Dipanjan Das

Learning To Split and Rephrase From Wikipedia Edit History
Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, Dipanjan Das

Linguistically-Informed Self-Attention for Semantic Role Labeling
Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, Andrew McCallum

Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, William Cohen

Noise Contrastive Estimation for Conditional Models: Consistency and Statistical Efficiency
Zhuang Ma, Michael Collins

Part-of-Speech Tagging for Code-Switched, Transliterated Texts without Explicit Language Identification
Kelsey Ball, Dan Garrette

Phrase-Indexed Question Answering: A New Challenge for Scalable Document Comprehension
Minjoon Seo, Tom Kwiatkowski, Ankur P. Parikh, Ali Farhadi, Hannaneh Hajishirzi

Policy Shaping and Generalized Update Equations for Semantic Parsing from Denotations
Dipendra Misra, Ming-Wei Chang, Xiaodong He, Wen-tau Yih

Revisiting Character-Based Neural Machine Translation with Capacity and Compression
Colin Cherry, George Foster, Ankur Bapna, Orhan Firat, Wolfgang Macherey

Self-governing neural networks for on-device short text classification
Sujith Ravi, Zornitsa Kozareva

Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc Le

State-of-the-art Chinese Word Segmentation with Bi-LSTMs
Ji Ma, Kuzman Ganchev, David Weiss

Subgoal Discovery for Hierarchical Dialogue Policy Learning
Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li, Tony Jebara

SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Translation
Xinyi Wang, Hieu Pham, Zihang Dai, Graham Neubig

The Importance of Generation Order in Language Modeling
Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George Dahl

Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, Yonghui Wu

Understanding Back-Translation at Scale
Sergey Edunov, Myle Ott, Michael Auli, David Grangier

Unsupervised Natural Language Generation with Denoising Autoencoders
Markus Freitag, Scott Roy

WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits for Modeling Language and Discourse
Manaal Faruqui, Ellie Pavlick, Ian Tenney, Dipanjan Das

WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community
Yiqing Hua, Cristian Danescu-Niculescu-Mizil, Dario Taraborelli, Nithum Thain, Jeffery Sorensen, Lucas Dixon

EMNLP Demos
SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing
Taku Kudo, John Richardson

Universal Sentence Encoder for English
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, Ray Kurzweil

CoNLL Shared Task
Multilingual Parsing from Raw Text to Universal Dependencies
Slav Petrov, co-organizer

Universal Dependency Parsing with Multi-Treebank Models
Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, Sara Stymne
(Winner of the Universal POS Tagging and Morphological Tagging subtasks, using the open-sourced Meta-BiLSTM tagger)

CoNLL Publication
Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
Katharina Kann, Sascha Rothe, Katja Filippova

Source: Google AI Blog


Understanding Performance Fluctuations in Quantum Processors



One area of research the Google AI Quantum team pursues is building quantum processors from superconducting electrical circuits, which are attractive candidates for implementing quantum bits (qubits). While superconducting circuits have demonstrated state-of-the-art performance and extensibility to modest processor sizes comprising tens of qubits, an outstanding challenge is stabilizing their performance, which can fluctuate unpredictably. Although performance fluctuations have been observed in numerous superconducting qubit architectures, their origin isn’t well understood, impeding progress in stabilizing processor performance.

In “Fluctuations of Energy-Relaxation Times in Superconducting Qubits” published in this week’s Physical Review Letters, we use qubits as probes of their environment to show that performance fluctuations are dominated by material defects. This was done by investigating qubits’ energy relaxation times (T1) — a popular performance metric that gives the length of time that it takes for a qubit to undergo energy-relaxation from its excited to ground state — as a function of operating frequency and time.

In measuring T1, we found that some qubit operating frequencies are significantly worse than others, forming energy-relaxation hot-spots (see figure below). Our research suggests that these hot spots are due to material defects, which are themselves quantum systems that can extract energy from qubits when their frequencies overlap (i.e. are “resonant”). Surprisingly, we found that the energy-relaxation hot spots are not static, but “move” on timescales ranging from minutes to hours. From these observations, we concluded that the dynamics of defects’ frequencies into and out of resonance with qubits drives the most significant performance fluctuations.
Left: A quantum processor similar to the one that was used to investigate qubit performance fluctuations. One qubit is highlighted in blue. Right: One qubit’s energy-relaxation time “T1” plotted as a function of it’s operating frequency and time. We see energy-relaxation hotspots, which our data suggest are due to material defects (black arrowheads). The motion of these hotspots into and out-of resonance with the qubit are responsible for the most significant energy-relaxation fluctuations. Note that these data were taken over a frequency band with an above-average density of defects.
These defects — which are typically referred to as two-level-systems (TLS) — are commonly believed to exist at the material interfaces of superconducting circuits. However, even after decades of research, their microscopic origin still puzzles researchers. In addition to clarifying the origin of qubit performance fluctuations, our data shed light on the physics governing defect dynamics, which is an important piece of this puzzle. Interestingly, from thermodynamics arguments we would not expect the defects that we see to exhibit any dynamics at all. Their energies are about one order of magnitude higher than the thermal energy available in our quantum processor, and so they should be “frozen out.” The fact that they are not frozen out suggests their dynamics may be driven by interactions with other defects that have much lower energies and can thus be thermally activated.

The fact that qubits can be used to investigate individual material defects - which are believed to have atomic dimensions, millions of times smaller than our qubits - demonstrates that they are powerful metrological tools. While it’s clear that defect research could help address outstanding problems in materials physics, it’s perhaps surprising that it has direct implications on improving the performance of today’s quantum processors. In fact, defect metrology already informs our processor design and fabrication, and even the mathematical algorithms that we use to avoid defects during quantum processor runtime. We hope this research motivates further work into understanding material defects in superconducting circuits.

Source: Google AI Blog


Improving Connectomics by an Order of Magnitude



The field of connectomics aims to comprehensively map the structure of the neuronal networks that are found in the nervous system, in order to better understand how the brain works. This process requires imaging brain tissue in 3D at nanometer resolution (typically using electron microscopy), and then analyzing the resulting image data to trace the brain’s neurites and identify individual synaptic connections. Due to the high resolution of the imaging, even a cubic millimeter of brain tissue can generate over 1,000 terabytes of data! When combined with the fact that the structures in these images can be extraordinarily subtle and complex, the primary bottleneck in brain mapping has been automating the interpretation of these data, rather than acquisition of the data itself.

Today, in collaboration with colleagues at the Max Planck Institute of Neurobiology, we published “High-Precision Automated Reconstruction of Neurons with Flood-Filling Networks” in Nature Methods, which shows how a new type of recurrent neural network can improve the accuracy of automated interpretation of connectomics data by an order of magnitude over previous deep learning techniques. An open-access version of this work is also available from biorXiv (2017).

3D Image Segmentation with Flood-Filling Networks
Tracing neurites in large-scale electron microscopy data is an example of an image segmentation problem. Traditional algorithms have divided the process into at least two steps: finding boundaries between neurites using an edge detector or a machine-learning classifier, and then grouping together image pixels that are not separated by a boundary using an algorithm like watershed or graph cut. In 2015, we began experimenting with an alternative approach based on recurrent neural networks that unifies these two steps. The algorithm is seeded at a specific pixel location and then iteratively “fills” a region using a recurrent convolutional neural network that predicts which pixels are part of the same object as the seed. Since 2015, we have been working to apply this new approach to large-scale connectomics datasets and rigorously quantify its accuracy.
A flood-filling network segmenting an object in 2d. The yellow dot is the center of the current area of focus; the algorithm expands the segmented region (blue) as it iteratively examines more of the overall image.
Measuring Accuracy via Expected Run Length
Working with our partners at the Max Planck Institute, we devised a metric we call “expected run length” (ERL) that measures the following: given a random point within a random neuron in a 3d image of a brain, how far can we trace the neuron before making some kind of mistake? This is an example of a mean-time-between-failure metric, except that in this case we measure the amount of space between failures rather than the amount of time. For engineers, the appeal of ERL is that it relates a linear, physical path length to the frequency of individual mistakes that are made by an algorithm, and that it can be computed in a straightforward way. For biologists, the appeal is that a particular numerical value of ERL can be related to biologically relevant quantities, such as the average path length of neurons in different parts of the nervous system.
Progress in expected run length (blue line) leading up to the results shared today in Nature Methods. The red line shows progress in the “merge rate,” which measures the frequency with which two separate neurites were erroneously traced as a single object; achieving a very low merge rate is important for enabling efficient strategies for manual identification and correction of the remaining errors in the reconstruction.
Songbird Connectomics
We used ERL to measure our progress on a ground-truth set of neurons within a 1-million cubic micron zebra finch song-bird brain imaged by our collaborators using serial block-face scanning electron microscopy and found that our approach performed much better than previous deep learning pipelines applied to the same dataset.
Our algorithm in action as it traces a single neurite in 3d in a songbird brain.
We segmented every neuron in a small portion of a zebra finch song-bird brain using the new flood-filling network approach, as depicted here:
Reconstruction of a portion of zebra finch brain. Colors denote distinct objects in the segmentation that was automatically generated using a flood-filling network. Gold spheres represent synaptic locations automatically identified using a previously published approach.
By combining these automated results with a small amount of additional human effort required to fix the remaining errors, our collaborators at the Max Planck Institute are now able to study the songbird connectome to derive new insights into how zebra finch birds sing their song and test theories related to how they learn their song.

Next Steps
We will continue to improve connectomics reconstruction technology, with the aim of fully automating synapse-resolution connectomics and contributing to ongoing connectomics projects at the Max Planck Institute and elsewhere. In order to help support the larger research community in developing connectomics techniques, we have also open-sourced the TensorFlow code for the flood-filling network approach, along with WebGL visualization software for 3d datasets that we developed to help us understand and improve our reconstruction results.

Acknowledgements
We would like to acknowledge core contributions from Tim Blakely, Peter Li, Larry Lindsey, Jeremy Maitin-Shepard, Art Pope and Mike Tyka (Google), as well as Joergen Kornfeld and Winfried Denk (Max Planck Institute).

Source: Google AI Blog


Google at ICML 2018



Machine learning is a key strategic focus at Google, with highly active groups pursuing research in virtually all aspects of the field, including deep learning and more classical algorithms, exploring theory as well as application. We utilize scalable tools and architectures to build machine learning systems that enable us to solve deep scientific and engineering challenges in areas of language, speech, translation, music, visual processing and more.

As a leader in machine learning research, Google is proud to be a Platinum Sponsor of the thirty-fifth International Conference on Machine Learning (ICML 2018), a premier annual event supported by the International Machine Learning Society taking place this week in Stockholm, Sweden. With over 130 Googlers attending the conference to present publications and host workshops, we look forward to our continued collaboration with the larger ML research community.

If you're attending ICML 2018, we hope you'll visit the Google booth and talk with our researchers to learn more about the exciting work, creativity and fun that goes into solving some of the field's most interesting challenges. Our researchers will also be available to talk about TensorFlow Hub, the latest work from the Magenta project, a Q&A session on the Google AI Residency program and much more. You can also learn more about our research being presented at ICML 2018 in the list below (Googlers highlighted in blue).

ICML 2018 Committees
Board Members include: Andrew McCallumCorinna CortesHugo LarochelleWilliam Cohen
Sponsorship Co-Chair: Ryan Adams

Accepted Publications
Predict and Constrain: Modeling Cardinality in Deep Structured Prediction
Nataly Brukhim, Amir Globerson

Quickshift++: Provably Good Initializations for Sample-Based Mean Shift
Heinrich Jiang, Jennifer Jang, Samory Kpotufe

Learning a Mixture of Two Multinomial Logits
Flavio Chierichetti, Ravi KumarAndrew Tomkins

Structured Evolution with Compact Architectures for Scalable Policy Optimization
Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E Turner, Adrian Weller

Fixing a Broken ELBO
Alexander Alemi, Ben Poole, Ian FischerJoshua DillonRif SaurousKevin Murphy

Hierarchical Long-term Video Prediction without Supervision
Nevan Wichers, Ruben Villegas, Dumitru ErhanHonglak Lee

Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings
John Co-Reyes, Yu Xuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, Sergey Levine

Well Tempered Lasso
Yuanzhi Li, Yoram Singer

Programmatically Interpretable Reinforcement Learning
Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, Swarat Chaudhuri

Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao XiaoYasaman BahriJascha Sohl-DicksteinSamuel SchoenholzJeffrey Pennington

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora, Nadav Cohen, Elad Hazan

Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints
Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi

Data Summarization at Scale: A Two-Stage Submodular Approach
Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi

Machine Theory of Mind
Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, S. M. Ali Eslami, Matthew Botvinick

Learning to Optimize Combinatorial Functions
Nir Rosenfeld, Eric Balkanski, Amir Globerson, Yaron Singer

Proportional Allocation: Simple, Distributed, and Diverse Matching with High Entropy
Shipra Agarwal, Morteza ZadimoghaddamVahab Mirrokni

Path Consistency Learning in Tsallis Entropy Regularized MDPs
Yinlam Chow, Ofir NachumMohammad Ghavamzadeh

Efficient Neural Architecture Search via Parameters Sharing
Hieu Pham, Melody Guan, Barret ZophQuoc LeJeff Dean

Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
Noam Shazeer, Mitchell Stern

Learning Memory Access Patterns
Milad HashemiKevin SwerskyJamie Smith, Grant Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, Parthasarathy Ranganathan

SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation
Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, Le Song

Scalable Bilinear Pi Learning Using State and Action Features
Yichen Chen, Lihong Li, Mengdi Wang

Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go?
Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia Li, Li Fei-Fei

Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta, Tomer Koren, Yoram Singer

Parallel and Streaming Algorithms for K-Core Decomposition
Hossein Esfandiari, Silvio LattanziVahab Mirrokni

Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?
Maithra RaghuAlexander Irpan, Jacob Andreas, Bobby Kleinberg, Quoc Le, Jon Kleinberg

Is Generator Conditioning Causally Related to GAN Performance?
Augustus OdenaJacob BuckmanCatherine OlssonTom BrownChristopher OlahColin RaffelIan Goodfellow

The Mirage of Action-Dependent Baselines in Reinforcement Learning
George TuckerSurya Bhupatiraju, Shixiang Gu, Richard E Turner, Zoubin Ghahramani, Sergey Levine

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia LiLi Fei-Fei

Loss Decomposition for Fast Learning in Large Output Spaces
En-Hsu Yen, Satyen KaleFelix Xinnan YuDaniel Holtmann-RiceSanjiv Kumar, Pradeep Ravikumar

A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music
Adam RobertsJesse EngelColin RaffelCurtis HawthorneDouglas Eck

Smoothed Action Value Functions for Learning Gaussian Policies
Ofir NachumMohammad NorouziGeorge TuckerDale Schuurmans

Fast Decoding in Sequence Models Using Discrete Latent Variables
Lukasz KaiserSamy BengioAurko RoyAshish VaswaniNiki ParmarJakob UszkoreitNoam Shazeer

Accelerating Greedy Coordinate Descent Methods
Haihao Lu, Robert Freund, Vahab Mirrokni

Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions
Shuaiwen Wang, Wenda Zhou, Haihao Lu, Arian Maleki, Vahab Mirrokni

Image Transformer
Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, Dustin Tran

Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron
RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan Wang, Daisy Stanton, Joel Shor, Ron Weiss, Robert Clark, Rif Saurous

Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen, Jeffrey Pennington,, Samuel Schoenholz

Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis
Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-Ryan, Eric Battenberg, Joel ShorYing Xiao, Ye Jia, Fei Ren, Rif Saurous

Constrained Interacting Submodular Groupings
Andrew CotterMahdi Milani FardSeungil YouMaya Gupta, Jeff Bilmes

Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training
Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen, Somesh Jha

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viégas, Rory Sayres

Online Learning with Abstention
Corinna CortesGiulia DeSalvoClaudio GentileMehryar Mohri, Scott Yang

Online Linear Quadratic Control
Alon CohenAvinatan HasidimTomer KorenNevena LazicYishay MansourKunal Talwar

Competitive Caching with Machine Learned Advice
Thodoris Lykouris, Sergei Vassilvitskii

Efficient Neural Audio Synthesis
Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart, Florian Stimberg, Aäron van den Oord, Sander Dieleman, Koray Kavukcuoglu

Gradient Descent with Identity Initialization Efficiently Learns Positive Definite Linear Transformations by Deep Residual Networks
Peter Bartlett, Dave Helmbold, Phil Long

Understanding and Simplifying One-Shot Architecture Search
Gabriel BenderPieter-Jan KindermansBarret ZophVijay VasudevanQuoc Le

Approximation Algorithms for Cascading Prediction Models
Matthew Streeter

Learning Longer-term Dependencies in RNNs with Auxiliary Losses
Trieu TrinhAndrew DaiThang LuongQuoc Le

Self-Imitation Learning
Junhyuk Oh, Yijie Guo, Satinder Singh, Honglak Lee

Adaptive Sampled Softmax with Kernel Based Sampling
Guy Blanc, Steffen Rendle

Workshops
2018 Workshop on Human Interpretability in Machine Learning (WHI)
Organizers: Been Kim, Kush Varshney, Adrian Weller
Invited Speakers include: Fernanda ViégasMartin Wattenberg

Exploration in Reinforcement Learning
Organizers: Ben EysenbachSurya BhupatirajuShane Gu, Junhyuk Oh, Vincent Vanhoucke, Oriol Vinyals, Doina Precup

Theoretical Foundations and Applications of Deep Generative Models
Invited speakers include: Honglak Lee

Source: Google AI Blog


Teaching Uncalibrated Robots to Visually Self-Adapt



People are remarkably proficient at manipulating objects without needing to adjust their viewpoint to a fixed or specific pose. This capability (referred to as visual motor integration) is learned during childhood from manipulating objects in various situations, and governed by a self-adaptation and mistake correction mechanism that uses rich sensory cues and vision as feedback. However, this capability is quite difficult for vision-based controllers in robotics, which until now have been built on a rigid setup for reading visual input data from a fixed mounted camera which should not be moved or repositioned at train and test time. The ability to quickly acquire visual motor control skills under large viewpoint variation would have substantial implications for autonomous robotic systems — for example, this capability would be particularly desirable for robots that can help rescue efforts in emergency or disaster zones.

In “Sim2Real Viewpoint Invariant Visual Servoing by Recurrent Control” presented at CVPR 2018 this week, we study a novel deep network architecture (consisting of two fully convolutional networks and a long short-term memory unit) that learns from a past history of actions and observations to self-calibrate. Using diverse simulated data consisting of demonstrated trajectories and reinforcement learning objectives, our visually-adaptive network is able to control a robotic arm to reach a diverse set of visually-indicated goals, from various viewpoints and independent of camera calibration.
Viewpoint invariant manipulation for visually indicated goal reaching with a physical robotic arm. We learn a single policy that can reach diverse goals from sensory input captured from drastically different camera viewpoints. First row shows the visually indicated goals.

The Challenge
Discovering how the controllable degrees of freedom (DoF) affect visual motion can be ambiguous and underspecified from a single image captured from an unknown viewpoint. Identifying the effect of actions on image-space motion and successfully performing the desired task requires a robust perception system augmented with the ability to maintain a memory of past actions. To be able to tackle this challenging problem, we had to address the following essential questions:
  • How can we make it feasible to provide the right amount of experience for the robot to learn the self-adaptation behavior based on pure visual observations that simulate a lifelong learning paradigm?
  • How can we design a model that integrates robust perception and self-adaptive control such that it can quickly transfer to unseen environments?
To do so, we devised a new manipulation task where a seven-DoF robot arm is provided with an image of an object and is directed to reach that particular goal amongst a set of distractor objects, while viewpoints change drastically from one trial to another. In doing so, we were able to simulate both the learning of complex behaviors and the transfer to unseen environments.
Visually indicated goal reaching task with a physical robotic arm and diverse camera viewpoints.
Harnessing Simulation to Learn Complex Behaviors
Collecting robot experience data is difficult and time-consuming. In a previous post, we showed how to scale up learning skills by distributing the data collection and trials to multiple robots. Although this approach expedited learning, it is still not feasibly extendable to learning complex behaviors such as visual self-calibration, where we need to expose robots to a huge space of various viewpoints. Instead, we opt to learn such complex behavior in simulation where we can collect unlimited robot trials and easily move the camera to various random viewpoints. In addition to fast data collection in simulation, we can also surpass hardware limitations requiring the installation of multiple cameras around a robot.
We use domain randomization technique to learn generalizable policies in simulation.
To learn visually robust features to transfer to unseen environments, we used a technique known as domain randomization (a.k.a. simulation randomization) introduced by Sadeghi & Levine (2017), that enables robots to learn vision-based policies entirely in simulation such that they can generalize to the real world. This technique was shown to work well for various robotic tasks such as indoor navigation, object localization, pick and placing, etc. In addition, to learn complex behaviors like self-calibration, we harnessed the simulation capabilities to generate synthetic demonstrations and combined reinforcement learning objectives to learn a robust controller for the robotic arm.
Viewpoint invariant manipulation for visually indicated goal reaching with a simulated seven-DoF robotic arm. We learn a single policy that can reach diverse goals from sensory input captured from dramatically different camera viewpoints.

Disentangling Perception from Control
To enable fast transfer to unseen environments, we devised a deep neural network that combines perception and control trained end-to-end simultaneously, while also allowing each to be learned independently if needed. This disentanglement between perception and control eases transfer to unseen environments, and makes the model both flexible and efficient in that each of its parts (i.e. 'perception' or 'control') can be independently adapted to new environments with small amounts of data. Additionally, while the control portion of the network was entirely trained by the simulated data, the perception part of our network was complemented by collecting a small amount of static images with object bounding boxes without needing to collect the whole action sequence trajectory with a physical robot. In practice, we fine-tuned the perception part of our network with only 76 object bounding boxes coming from 22 images.
Real-world robot and moving camera setup. First row shows the scene arrangements and the second row shows the visual sensory input to the robot.
Early Results
We tested the visually-adapted version of our network on a physical robot and on real objects with drastically different appearances than the ones used in simulation. Experiments were performed with both one or two objects on a table — “seen objects” (as labeled in the figure below) were used for visual adaptation using small collection of real static images, while “unseen objects” had not been seen during visual adaptation. During the test, the robot arm was directed to reach a visually indicated object from various viewpoints. For the two object experiments the second object was to "fool" the robotic arm. While the simulation-only network has good generalization capability (due to being trained with domain randomization technique), the very small amount of static visual data to visually adapt the controller boosted the performance, due to the flexible architecture of our network.
After adapting the visual features with the small amount of real images, performance was boosted by more than 10%. All used real objects are drastically different from the objects seen in simulation.
We believe that learning online visual self-adaptation is an important and yet challenging problem with the goal of learning generalizable policies for robots that can act in diverse and unstructured real world setup. Our approach can be extended to any sort of automatic self-calibration. See the video below for more information on this work.
Acknowledgements
This research was conducted by Fereshteh Sadeghi, Alexander Toshev, Eric Jang and Sergey Levine. We would also like to thank Erwin Coumans and Yunfei Bai for providing pybullet, and Vincent Vanhoucke for insightful discussions.




Source: Google AI Blog


Google at CVPR 2018

Posted by Christian Howard, Editor-in-Chief, Google AI Communications

This week, Salt Lake City hosts the 2018 Conference on Computer Vision and Pattern Recognition (CVPR 2018), the premier annual computer vision event comprising the main conference and several co-located workshops and tutorials. As a leader in computer vision research and a Diamond Sponsor, Google will have a strong presence at CVPR 2018 — over 200 Googlers will be in attendance to present papers and invited talks at the conference, and to organize and participate in multiple workshops.

If you are attending CVPR this year, please stop by our booth and chat with our researchers who are actively pursuing the next generation of intelligent systems that utilize the latest machine learning techniques applied to various areas of machine perception. Our researchers will also be available to talk about and demo several recent efforts, including the technology behind portrait mode on the Pixel 2 and Pixel 2 XL smartphones, the Open Images V4 dataset and much more.

You can learn more about our research being presented at CVPR 2018 in the list below (Googlers highlighted in blue)

Organization
Finance Chair: Ramin Zabih

Area Chairs include: Sameer Agarwal, Aseem Agrawala, Jon Barron, Abhinav Shrivastava, Carl Vondrick, Ming-Hsuan Yang

Orals/Spotlights
Unsupervised Discovery of Object Landmarks as Structural Representations
Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, Honglak Lee

DoubleFusion: Real-time Capture of Human Performances with Inner Body Shapes from a Single Depth Sensor
Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai Dai, Hao Li, Gerard Pons-Moll, Yebin Liu

Neural Kinematic Networks for Unsupervised Motion Retargetting
Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

Burst Denoising with Kernel Prediction Networks
Ben Mildenhall, Jiawen Chen, Jonathan BarronRobert Carroll, Dillon Sharlet, Ren Ng

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference Benoit Jacob, Skirmantas Kligys, Bo Chen, Matthew Tang, Menglong Zhu, Andrew Howard, Dmitry KalenichenkoHartwig Adam

AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, Jitendra Malik

Focal Visual-Text Attention for Visual Question Answering
Junwei Liang, Lu Jiang, Liangliang Cao, Li-Jia Li, Alexander G. Hauptmann

Inferring Light Fields from Shadows
Manel Baradad, Vickie Ye, Adam Yedida, Fredo Durand, William Freeman, Gregory Wornell, Antonio Torralba

Modifying Non-Local Variations Across Multiple Views
Tal Tlusty, Tomer Michaeli, Tali Dekel, Lihi Zelnik-Manor

Iterative Visual Reasoning Beyond Convolutions
Xinlei Chen, Li-jia Li, Fei-Fei Li, Abhinav Gupta

Unsupervised Training for 3D Morphable Model Regression
Kyle Genova, Forrester Cole, Aaron Maschinot, Daniel Vlasic, Aaron Sarna, William Freeman

Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le

The iNaturalist Species Classification and Detection Dataset
Grant van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, Serge Belongie

Learning Intrinsic Image Decomposition from Watching the World
Zhengqi Li, Noah Snavely

Learning Intelligent Dialogs for Bounding Box Annotation
Ksenia Konyushkova, Jasper Uijlings, Christoph Lampert, Vittorio Ferrari

Posters
Revisiting Knowledge Transfer for Training Object Class Detectors
Jasper Uijlings, Stefan Popov, Vittorio Ferrari

Rethinking the Faster R-CNN Architecture for Temporal Action Localization
Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David Ross, Jia Deng, Rahul Sukthankar

Hierarchical Novelty Detection for Visual Object Recognition
Kibok Lee, Kimin Lee, Kyle Min, Yuting Zhang, Jinwoo Shin, Honglak Lee

COCO-Stuff: Thing and Stuff Classes in Context
Holger Caesar, Jasper Uijlings, Vittorio Ferrari

Appearance-and-Relation Networks for Video Classification
Limin Wang, Wei Li, Wen Li, Luc Van Gool

MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks
Ariel Gordon, Elad Eban, Bo Chen, Ofir Nachum, Tien-Ju Yang, Edward Choi

Deformable Shape Completion with Graph Convolutional Autoencoders
Or Litany, Alex Bronstein, Michael Bronstein, Ameesh Makadia

MegaDepth: Learning Single-View Depth Prediction from Internet Photos
Zhengqi Li, Noah Snavely

Unsupervised Discovery of Object Landmarks as Structural Representations
Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, Honglak Lee

Burst Denoising with Kernel Prediction Networks
Ben Mildenhall, Jiawen Chen, Jonathan Barron, Robert Carroll, Dillon Sharlet, Ren Ng

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference Benoit Jacob, Skirmantas Kligys, Bo Chen, Matthew Tang, Menglong Zhu, Andrew Howard, Dmitry Kalenichenko, Hartwig Adam

Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling
Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Tianfan Xue, Joshua Tenenbaum, William Freeman

Sparse, Smart Contours to Represent and Edit Images
Tali Dekel, Dilip Krishnan, Chuang Gan, Ce Liu, William Freeman

MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features
Liang-Chieh Chen, Alexander Hermans, George Papandreou, Florian Schroff, Peng Wang, Hartwig Adam

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning
Yin Cui, Yang Song, Chen Sun, Andrew Howard, Serge Belongie

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Sung Jin Hwang, George Toderici, Troy Chinen, Joel Shor

MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans 
Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Juergen Sturm, Matthias Nießner

Sim2Real View Invariant Visual Servoing by Recurrent Control
Fereshteh Sadeghi, Alexander Toshev, Eric Jang, Sergey Levine

Alternating-Stereo VINS: Observability Analysis and Performance Evaluation
Mrinal Kanti Paul, Stergios Roumeliotis

Soccer on Your Tabletop
Konstantinos Rematas, Ira Kemelmacher, Brian Curless, Steve Seitz

Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints
Reza Mahjourian, Martin Wicke, Anelia Angelova

AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions
Chunhui Gu, Chen Sun, David Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, Jitendra Malik

Inferring Light Fields from Shadows
Manel Baradad, Vickie Ye, Adam Yedida, Fredo Durand, William Freeman, Gregory Wornell, Antonio Torralba

Modifying Non-Local Variations Across Multiple Views
Tal Tlusty, Tomer Michaeli, Tali Dekel, Lihi Zelnik-Manor

Aperture Supervision for Monocular Depth Estimation
Pratul Srinivasan, Rahul Garg, Neal Wadhwa, Ren Ng, Jonathan Barron

Instance Embedding Transfer to Unsupervised Video Object Segmentation
Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi, Qin Huang, C.-C. Jay Kuo

Frame-Recurrent Video Super-Resolution
Mehdi S. M. Sajjadi, Raviteja Vemulapalli, Matthew Brown

Weakly Supervised Action Localization by Sparse Temporal Pooling Network
Phuc Nguyen, Ting Liu, Gautam Prasad, Bohyung Han

Iterative Visual Reasoning Beyond Convolutions
Xinlei Chen, Li-jia Li, Fei-Fei Li, Abhinav Gupta

Learning and Using the Arrow of Time
Donglai Wei, Andrew Zisserman, William Freeman, Joseph Lim

HydraNets: Specialized Dynamic Architectures for Efficient Inference
Ravi Teja Mullapudi, Noam Shazeer, William Mark, Kayvon Fatahalian

Thoracic Disease Identification and Localization with Limited Supervision
Zhe Li, Chong Wang, Mei Han, Yuan Xue, Wei Wei, Li-jia Li, Fei-Fei Li

Inferring Semantic Layout for Hierarchical Text-to-Image Synthesis
Seunghoon Hong, Dingdong Yang, Jongwook Choi, Honglak Lee

Deep Semantic Face Deblurring
Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, Ming-Hsuan Yang

Unsupervised Training for 3D Morphable Model Regression
Kyle Genova, Forrester Cole, Aaron Maschinot, Daniel Vlasic, Aaron Sarna, William Freeman

Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le

Learning Intrinsic Image Decomposition from Watching the World
Zhengqi Li, Noah Snavely

PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection
Nian Liu, Junwei Han, Ming-Hsuan Yang

Tutorials
Computer Vision for Robotics and Driving
Anelia Angelova, Sanja Fidler

Unsupervised Visual Learning
Pierre Sermanet, Anelia Angelova

UltraFast 3D Sensing, Reconstruction and Understanding of People, Objects and Environments
Sean Fanello, Julien Valentin, Jonathan Taylor, Christoph Rhemann, Adarsh Kowdle, Jürgen SturmChristine Kaeser-Chen, Pavel Pidlypenskyi, Rohit Pandey, Andrea Tagliasacchi, Sameh Khamis, David Kim, Mingsong Dou, Kaiwen Guo, Danhang Tang, Shahram Izadi

Generative Adversarial Networks
Jun-Yan Zhu, Taesung Park, Mihaela Rosca, Phillip Isola, Ian Goodfellow

Source: Google AI Blog


Google at NAACL



This week, New Orleans, LA hosted the North American Association of Computational Linguistics (NAACL) conference, a venue for the latest research on computational approaches to understanding natural language. Google once again had a strong presence, presenting our research on a diverse set of topics, including dialog, summarization, machine translation, and linguistic analysis. In addition to contributing publications, Googlers were also involved as committee members, workshop organizers, panelists and presented one of the conference keynotes. We also provided telepresence robots, which enabled researchers who couldn’t attend in person to present their work remotely at the Widening Natural Language Processing Workshop (WiNLP).
Googler Margaret Mitchell and a researcher using our telepresence robots to remotely present their work at the WiNLP workshop.
This year NAACL also introduced a new Test of Time Award recognizing influential papers published between 2002 and 2012. We are happy and honored to recognize that all three papers receiving the award (listed below with a shot summary) were co-authored by researchers who are now at Google (in blue):

BLEU: a Method for Automatic Evaluation of Machine Translation (2002)
Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu
Before the introduction of the BLEU metric, comparing Machine Translation (MT) models required expensive human evaluation. While human evaluation is still the gold standard, the strong correlation of BLEU with human judgment has permitted much faster experiment cycles. BLEU has been a reliable measure of progress, persisting through multiple paradigm shifts in MT.

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms (2002)
Michael Collins
The structured perceptron is a generalization of the classical perceptron to structured prediction problems, where the number of possible "labels" for each input is a very large set, and each label has rich internal structure. Canonical examples are speech recognition, machine translation, and syntactic parsing. The structured perceptron was one of the first algorithms proposed for structured prediction, and has been shown to be effective in spite of its simplicity.

Thumbs up?: Sentiment Classification using Machine Learning Techniques (2002)
Bo Pang, Lillian Lee, Shivakumar Vaithyanathan
This paper is amongst the first works in sentiment analysis and helped define the subfield of sentiment and opinion analysis and review mining. The paper introduced a new way to look at document classification, developed the first solutions to it using supervised machine learning methods, and discussed insights and challenges. This paper also had significant data impact -- the movie review dataset has supported much of the early work in this area and is still one of the commonly used benchmark evaluation datasets.

If you attended NAACL 2018, we hope that you stopped by the booth to check out some demos, meet our researchers and discuss projects and opportunities at Google that go into solving interesting problems for billions of people. You can learn more about Google research presented at NAACL 2018 below (Googlers highlighted in blue), and visit the Google AI Language Team page.

Keynote
Google Assistant or My Assistant? Towards Personalized Situated Conversational Agents
Dilek Hakkani-Tür

Publications
Bootstrapping a Neural Conversational Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning
Pararth Shah, Dilek Hakkani-Tür, Bing Liu, Gokhan Tür

SHAPED: Shared-Private Encoder-Decoder for Text Style Adaptation
Ye Zhang, Nan Ding, Radu Soricut

Olive Oil is Made of Olives, Baby Oil is Made for Babies: Interpreting Noun Compounds Using Paraphrases in a Neural Model
Vered Schwartz, Chris Waterson

Are All Languages Equally Hard to Language-Model?
Ryan Cotterell, Sebastian J. Mielke, Jason Eisner, Brian Roark

Self-Attention with Relative Position Representations
Peter Shaw, Jakob Uszkoreit, Ashish Vaswani

Dialogue Learning with Human Teaching and Feedback in End-to-End Trainable Task-Oriented Dialogue Systems
Bing Liu, Gokhan Tür, Dilek Hakkani-Tür, Parath Shah, Larry Heck

Workshops
Subword & Character Level Models in NLP
Organizers: Manaal Faruqui, Hinrich Schütze, Isabel Trancoso, Yulia Tsvetkov, Yadollah Yaghoobzadeh

Storytelling Workshop
Organizers: Margaret Mitchell, Ishan Misra, Ting-Hao 'Kenneth' Huang, Frank Ferraro

Ethics in NLP
Organizers: Michael Strube, Dirk Hovy, Margaret Mitchell, Mark Alfano

NAACL HLT Panels
Careers in Industry
Participants: Philip Resnik (moderator), Jason Baldridge, Laura Chiticariu, Marie Mateer, Dan Roth

Ethics in NLP
Participants: Dirk Hovy (moderator), Margaret Mitchell, Vinodkumar Prabhakaran, Mark Yatskar, Barbara Plank

Source: Google AI Blog


The Question of Quantum Supremacy



Quantum computing integrates the two largest technological revolutions of the last half century, information technology and quantum mechanics. If we compute using the rules of quantum mechanics, instead of binary logic, some intractable computational tasks become feasible. An important goal in the pursuit of a universal quantum computer is the determination of the smallest computational task that is prohibitively hard for today’s classical computers. This crossover point is known as the “quantum supremacy” frontier, and is a critical step on the path to more powerful and useful computations.

In “Characterizing quantum supremacy in near-term devices” published in Nature Physics (arXiv here), we present the theoretical foundation for a practical demonstration of quantum supremacy in near-term devices. It proposes the task of sampling bit-strings from the output of random quantum circuits, which can be thought of as the “hello world” program for quantum computers. The upshot of the argument is that the output of random chaotic systems (think butterfly effect) become very quickly harder to predict the longer they run. If one makes a random, chaotic qubit system and examines how long a classical system would take to emulate it, one gets a good measure of when a quantum computer could outperform a classical one. Arguably, this is the strongest theoretical proposal to prove an exponential separation between the computational power of classical and quantum computers.

Determining where exactly the quantum supremacy frontier lies for sampling random quantum circuits has rapidly become an exciting area of research. On one hand, improvements in classical algorithms to simulate quantum circuits aim to increase the size of the quantum circuits required to establish quantum supremacy. This forces an experimental quantum device with a sufficiently large number of qubits and low enough error rates to implement circuits of sufficient depth (i.e the number of layers of gates in the circuit) to achieve supremacy. On the other hand, we now understand better how the particular choice of the quantum gates used to build random quantum circuits affects the simulation cost, leading to improved benchmarks for near-term quantum supremacy (available for download here), which are in some cases quadratically more expensive to simulate classically than the original proposal.

Sampling from random quantum circuits is an excellent calibration benchmark for quantum computers, which we call cross-entropy benchmarking. A successful quantum supremacy experiment with random circuits would demonstrate the basic building blocks for a large-scale fault-tolerant quantum computer. Furthermore, quantum physics has not yet been tested for highly complex quantum states such as this.
Space-time volume of a quantum circuit computation. The computational cost for quantum simulation increases with the volume of the quantum circuit, and in general grows exponentially with the number of qubits and the circuit depth. For asymmetric grids of qubits, the computational space-time volume grows slower with depth than for symmetric grids, and can result in circuits exponentially easier to simulate.
In “A blueprint for demonstrating quantum supremacy with superconducting qubits” (arXiv here), we illustrate a blueprint towards quantum supremacy and experimentally demonstrate a proof-of-principle version for the first time. In the paper, we discuss two key ingredients for quantum supremacy: exponential complexity and accurate computations. We start by running algorithms on subsections of the device ranging from 5 to 9 qubits. We find that the classical simulation cost grows exponentially with the number of qubits. These results are intended to provide a clear example of the exponential power of these devices. Next, we use cross-entropy benchmarking to compare our results against that of an ordinary computer and show that our computations are highly accurate. In fact, the error rate is low enough to achieve quantum supremacy with a larger quantum processor.

Beyond achieving quantum supremacy, a quantum platform should offer clear applications. In our paper, we apply our algorithms towards computational problems in quantum statistical-mechanics using complex multi-qubit gates (as opposed to the two-qubit gates designed for a digital quantum processor with surface code error correction). We show that our devices can be used to study fundamental properties of materials, e.g. microscopic differences between metals and insulators. By extending these results to next-generation devices with ~50 qubits, we hope to answer scientific questions that are beyond the capabilities of any other computing platform.
Photograph of two gmon superconducting qubits and their tunable coupler developed by Charles Neill and Pedram Roushan.
These two publications introduce a realistic proposal for near-term quantum supremacy, and demonstrate a proof-of-principle version for the first time. We will continue to decrease the error rates and increase the number of qubits in quantum processors to reach the quantum supremacy frontier, and to develop quantum algorithms for useful near-term applications.

The Question of Quantum Supremacy



Quantum computing integrates the two largest technological revolutions of the last half century, information technology and quantum mechanics. If we compute using the rules of quantum mechanics, instead of binary logic, some intractable computational tasks become feasible. An important goal in the pursuit of a universal quantum computer is the determination of the smallest computational task that is prohibitively hard for today’s classical computers. This crossover point is known as the “quantum supremacy” frontier, and is a critical step on the path to more powerful and useful computations.

In “Characterizing quantum supremacy in near-term devices” published in Nature Physics (arXiv here), we present the theoretical foundation for a practical demonstration of quantum supremacy in near-term devices. It proposes the task of sampling bit-strings from the output of random quantum circuits, which can be thought of as the “hello world” program for quantum computers. The upshot of the argument is that the output of random chaotic systems (think butterfly effect) become very quickly harder to predict the longer they run. If one makes a random, chaotic qubit system and examines how long a classical system would take to emulate it, one gets a good measure of when a quantum computer could outperform a classical one. Arguably, this is the strongest theoretical proposal to prove an exponential separation between the computational power of classical and quantum computers.

Determining where exactly the quantum supremacy frontier lies for sampling random quantum circuits has rapidly become an exciting area of research. On one hand, improvements in classical algorithms to simulate quantum circuits aim to increase the size of the quantum circuits required to establish quantum supremacy. This forces an experimental quantum device with a sufficiently large number of qubits and low enough error rates to implement circuits of sufficient depth (i.e the number of layers of gates in the circuit) to achieve supremacy. On the other hand, we now understand better how the particular choice of the quantum gates used to build random quantum circuits affects the simulation cost, leading to improved benchmarks for near-term quantum supremacy (available for download here), which are in some cases quadratically more expensive to simulate classically than the original proposal.

Sampling from random quantum circuits is an excellent calibration benchmark for quantum computers, which we call cross-entropy benchmarking. A successful quantum supremacy experiment with random circuits would demonstrate the basic building blocks for a large-scale fault-tolerant quantum computer. Furthermore, quantum physics has not yet been tested for highly complex quantum states such as this.
Space-time volume of a quantum circuit computation. The computational cost for quantum simulation increases with the volume of the quantum circuit, and in general grows exponentially with the number of qubits and the circuit depth. For asymmetric grids of qubits, the computational space-time volume grows slower with depth than for symmetric grids, and can result in circuits exponentially easier to simulate.
In “A blueprint for demonstrating quantum supremacy with superconducting qubits” (arXiv here), we illustrate a blueprint towards quantum supremacy and experimentally demonstrate a proof-of-principle version for the first time. In the paper, we discuss two key ingredients for quantum supremacy: exponential complexity and accurate computations. We start by running algorithms on subsections of the device ranging from 5 to 9 qubits. We find that the classical simulation cost grows exponentially with the number of qubits. These results are intended to provide a clear example of the exponential power of these devices. Next, we use cross-entropy benchmarking to compare our results against that of an ordinary computer and show that our computations are highly accurate. In fact, the error rate is low enough to achieve quantum supremacy with a larger quantum processor.

Beyond achieving quantum supremacy, a quantum platform should offer clear applications. In our paper, we apply our algorithms towards computational problems in quantum statistical-mechanics using complex multi-qubit gates (as opposed to the two-qubit gates designed for a digital quantum processor with surface code error correction). We show that our devices can be used to study fundamental properties of materials, e.g. microscopic differences between metals and insulators. By extending these results to next-generation devices with ~50 qubits, we hope to answer scientific questions that are beyond the capabilities of any other computing platform.
Photograph of two gmon superconducting qubits and their tunable coupler developed by Charles Neill and Pedram Roushan.
These two publications introduce a realistic proposal for near-term quantum supremacy, and demonstrate a proof-of-principle version for the first time. We will continue to decrease the error rates and increase the number of qubits in quantum processors to reach the quantum supremacy frontier, and to develop quantum algorithms for useful near-term applications.

Source: Google AI Blog