Tag Archives: Computer Science

Announcing Google Cloud Platform Education Grants for computer science



While university students are on their summer holidays, internships or jobs, their professors are already hard at work planning for fall courses. These course maps will be at the center of student learning, research and academic growth. Google was founded on the basis of the work that Larry and Sergey did as computer science students at Stanford, and we understand the critical role that teachers play in fostering and inspiring the innovation we see today and will see in the years to come. That’s why we’re excited to offer Google Cloud Platform Education Grants for computer science.

Starting today, university faculty in the United States who teach courses in computer science or related subjects can apply for free credits for their students to use across the full suite of Google Cloud Platform tools, like App Engine and the Cloud Machine Learning Platform. These credits can be used any time during the 2016-17 academic year and give students access to the same tools and infrastructure used by Google engineers.
Students like Duke University undergrad Brittany Wenger are already taking advantage of cloud computing. After watching several women in her family suffer from breast cancer, Brittany used her knowledge of artificial intelligence to create Cloud4Cancer, an artificial neural network built on top of Google App Engine. By analyzing uploaded scans of benign and malignant breast cancer tumors, Cloud4Cancer has learned to distinguish between healthy and unhealthy tissue. It’s providing health care professionals with a powerful diagnostic tool in the fight against cancer.

Google Cloud Platform offers a range of tools and services that are unique among cloud providers. The tool that Brittany used -- Google App Engine -- lets you simply build and run an application without having to configure custom infrastructure. Our Machine Learning platform allows you to build models for any type of data, at any size, and TensorFlow provides access to an open-source public software library (tinker with that extensive data here). Students will also be able to get their hands on one of Cloud Platform’s most popular new innovations: the Cloud Vision API, which allows you to incorporate Google’s state-of-the-art image recognition capabilities into the most basic web or mobile app.

We look forward to seeing the creative ways that computer science students will use their Google Cloud Platform Education Grants, and will share stories along the way on this blog.

Computer science faculty in the United States can apply here for Education Grants. Students and others interested in Cloud Platform for Higher Education, should complete this form to register and stay up to date with the latest from Cloud Platform. For more information on Cloud Platform and its uses for higher education, visit our Google Cloud Platform for Higher Education site.

Accelerating CS Education in Local Communities: The Stats by State



Nationally, 9 in 10 parents want their children to learn computer science (CS) but only a quarter of principals report offering CS with programming in their schools. Ever wonder what the stats look like in your state? Today, we're excited to release new reports that take a closer look for 11 states. These reports are part of our comprehensive multi-year research study with Gallup Inc. and cover the most populous U.S. states (CA, FL, GA, IL, MI, NC, NY, OH, PA, TX, and WI). For each state, we highlight insights about CS perceptions as well as challenges to providing CS education for all students, and we show how the state compares to the national average.
New reports on CS education for the most populous states as part of our comprehensive multi-year research study with Gallup Inc.
There's no silver bullet to increasing students' access and exposure to CS, but from our research, we identified four areas that we must focus on in order to move the needle. We found:

  1. The greatest challenges to offering CS included lack of qualified teachers for the subject matter and budget for teachers. 
  2.  Other school system barriers are a focus on testing requirements and low perceived institutional support, even with high support among parents and educators found in our previous report. 
  3. CS offerings at schools are limited and often serve select students. 
  4. Perceptions of what CS involves are unclear, with many principals confusing CS as basic computer literacy.

The reports provide more detail on each state’s unique challenges. Below, we share some local initiatives tackling the four key areas identified by the research.

Empowering CS teaching
Nationally, we found the #1 barrier to offering CS classes is lack of budget to hire or train teachers. At Google, we are committed to closing this gap by empowering teachers in local communities through CS4HS, a program that has funded CS teacher professional development worldwide and in over 37 states. Support from CS4HS and the National Science Foundation enabled Marquette University in Wisconsin to provide programming to double the number of CS teachers in the state. We also partner with Code.org and local leaders to expand the number of CS teachers across the U.S. In Georgia, they partnered with CEISMC at Georgia Tech as well as the Department of Education and Governor’s office to open teacher professional learning programs to the entire state. In Riverside Unified School District, the 15th largest district in California, CS First, our free program that helps anyone—a teacher, parent or volunteer—teach kids the basics of CS, began in just a couple schools and spread to the whole district, with the city embracing the program to reach its community of predominantly minority students.
Students in Riverside Unified School District in California learning CS First.
Photo credit: Marc Lyon Galang, RUSD Office of Communications
Collaboratively building support with schools
Unfortunately, teacher preparation isn’t the only challenge school systems face in implementing CS programs. Infrastructure and varied local implementation pose difficulties for schools. We support organizations like ACCESS in California, which addresses these systemic issues in CS education at a state-wide level while ensuring equity is interwoven. TASA’s Future-Ready Superintendent Network is also doing incredible work on the ground in Texas; we recently hosted them to share and brainstorm innovative ways to transform education and bring CS to their districts. And on the city level there’s been exciting engagement coming out of the Chicago Public Schools in Illinois through awareness building events with teachers, administrators and mayoral staff, and in New York City, Mayor de Blasio’s roll out of Computer Science for All has ignited support for CS education across the city.

Reaching diverse students beyond school
While these initiatives in formal education are exciting developments, none happen overnight. In order to broaden access for all students now, it’s equally important to engage in informal education. One such initiative we supported in Michigan is Hello World, a camp for middle school girls founded by high schooler Christina Li. Christina was recognized with the White House Champion of Change in Computer Science Education award and on Nickelodeon’s The HALO Effect. Our Computer Science Summer Institute (CSSI) provides opportunities for diverse students like KaMar Galloway to strengthen their CS skills and prepare them for a technical career. CSSI was instrumental in KaMar’s pursuit of CS at North Carolina State University and eventually his role on our CS First team, which aims to engage 1 million students in CS, particularly those from underrepresented groups.

Broadening perceptions and stereotypes
Lastly, we need to broaden perceptions and stereotypes of CS, which our research found are discouraging for many, especially girls and minorities. Google’s CS in Media team works with writers, producers and studios to help create more accurate and varied storylines about CS and to diversify media portrayals of computer scientists. Recently, we partnered with the Miami International Film Festival on a 4-day seminar series on gender and racial gaps in film and tech to increase awareness and brainstorm solutions. Googlers in our Pittsburgh, Pennsylvania office annually provide 60 teachers and 650 students with a real-world look into CS. In Ohio, HER Ideas in Motion aims to change stereotypes by providing female tech role models and project-based learning for girls across the state. In New York, ScriptEd brings software engineers (including Googlers!) into the classroom to teach CS and connect underserved students to internships. These volunteer engineers serve as mentors to build students’ confidence and perception of the field. Both organizations received Google’s RISE Awards for their high impact outreach.

We hope that these numerous initiatives and nonprofits will continue to drive change in communities and that the research we released today will support them by identifying potential challenges and opportunities. Stay tuned for more—we’ll be continuing our research with Gallup and this summer, we’ll be releasing two new reports focusing on demographic disparities and unconscious biases in U.S. K-12 CS education.

#CS4All starts with our teachers



President Obama's Computer Science for All (#CSforAll) announcement in early 2016 emphasized that “we live in a time of extraordinary change.” Computer science (CS) education is being recognized at the federal level as a catalyst for future success. Last month, we joined an open letter to Congress, a request for national funding that would give every student across the U.S the opportunity to learn computer science. The movement to provide quality CS programs is gaining momentum, and Google is proud to be part of the community working toward that goal.

We believe that it’s not only important for our students to be creators of new technology, but for our teachers to also have the opportunity to be innovators and out-of-the-box thinkers. A global study conducted by McKinsey found that one of the main drivers of excellence in the best performing schools worldwide are tools and programs provided for teacher professional development. These opportunities give educators access to share best practices and create improved resources for the curriculum and pedagogy of any particular subject. At Google, we are committed to supporting the professional development of teachers though CS4HS, an annual funding program for global CS teacher professional development opportunities at the high school level.

CS4HS awards bring professional development opportunities to high school teachers who often lack the support and resources to teach computational thinking and computer science in their classrooms. Research institutions or professional development organizations partner with communities of local high school teachers to help them build knowledge, skills, and confidence in teaching computer science and computational thinking through ongoing professional development opportunities.
2015 CS4HS Buffalo State University workshop
Almost every state in the U.S. is grappling with a need for more CS courses and professional development opportunities for teachers. In Nebraska, for example, only nine out of 144 schools (63 high schools and 81 middle schools) offer an IT-related course. Through CS4HS funding and a PD program created by the University of Nebraska at Kearney, teachers will be able to participate in workshops, near-peer mentoring, and a community of practice that helps them integrate CS/IT teaching methodologies into their classrooms, and inspire a new generation of young people in rural Nebraska to become creators of technology.

Programs like the one at the University of Nebraska at Kearney are growing on a global scale. Since the launch of CS4HS in 2009, over 20,000 teachers have been trained through CS4HS professional development opportunities, and over one million students have benefited from these trainings. Funding is awarded to applicants that demonstrate a sound pedagogical approach to CS and a foundation of an ongoing community of practice around CS professional development. This coming school year, Google is increasing its investment in professional development by funding 34 institutions in the US and many others programs worldwide. Check out the CS4HS site for more information, or to learn about the 2017 funding cycle.

Perhaps the most significant emphasis of the McKinsey study is that the “the quality of an education system cannot exceed the quality of its teachers.” The solution lies in a community of advocates that extends beyond our teachers, and builds a culture of dialogue through administrators, parents, policy makers, and companies. By providing funding for CS professional development programs, Google is working to ensure that our teachers are best prepared to serve the next generation of creators, embracing this time of innovation and extraordinary change.

Inspiring tomorrow’s coders at I/O Youth and beyond



Google I/O is all about bringing creative coders together to imagine what’s next. And who better to build for the future than kids, the developers of tomorrow. That’s why we launched I/O Youth - inspiring kids to imagine, invent, and explore through the power of technology.

Today, we’ll celebrate the third anniversary of I/O Youth by hosting 120 students from Bay Area schools at Google I/O. Over the course of the day, kids and their teachers will be inspired by hands-on activities like designing a custom robotic monster and 3D car, bringing them to life using the power of code, directing a digital cartoon, and creating a personalized water bottle design through Made with Code.

Over the course of the day, kids will hear from speakers who use technology to do amazing things every day - like Ryan Germick, head of the Google Doodles team, who’ll talk about the beauty of art and technology coming together; Brent Bushnell, CEO of Two Bit Circus, who’ll take them on a virtual field trip to his workshop, and Anika Cheerla, 13-year old Google Science Fair finalist who built a way to accurately diagnose Alzheimer's disease, who’ll share how she discovered her love for science. They’ll also get to hear about how technology helps to bring some of their favorite things to life from a producer of Design Squad Global by PBS Kids and WGBH, a Nickelodeon creator, and a Pokémon game designer.

We’re also excited to announce our collaboration with Scratch, enabling developers to design creative coding and learning experiences for kids. Today we take the first step in this collaboration with the release of an early developer preview of Scratch Blocks code. We hope that developers will use Scratch Blocks to create consistent, high-quality programming experiences for kids everywhere.
At I/O Youth, students will get early access to a prototype built with Scratch Blocks
I/O Youth is just one of many ways we’re focused on helping young people to imagine, invent, and explore through the power of technology. Beyond today’s event, we also have year-round programs to help inspire and train our engineers of the future, including:



Google Science Fair - an international competition inspiring teenagers from all over the globe to ask questions about their world and solve them with science. The deadline to submit projects for this year’s competition is today, so stay tuned to see who will win!






Made with Code - our initiative to inspire millions of girls to learn code, and see coding as a means to pursue their dream careers.


CS First - increasing elementary and middle school students’ access and exposure to Computer Science with a focus on girls and underrepresented minorities.




If you’re not joining us at Shoreline Amphitheater for I/O Youth today, follow along on Twitter at #io16 and #ioyouth as we share updates along the way. Here's to celebrating and inspiring our future engineers today, and every day.

Change culture, not curriculum, to get more women into computer science



(Cross-posted on the re:Work blog)

Editor's note: Carol Frieze, PhD, is Director of Women@SCS and SCS4ALL, Carnegie Mellon School of Computer Science. Jeria Quesenberry, PhD, is an Associate Teaching Professor in the Information Systems program at Carnegie Mellon Dietrich College.They are the authors of a new book, Kicking Butt in Computer Science: Women in Computing at Carnegie Mellon University which tells the positive story of how one school developed a culture and environment in which both women and men could thrive and be successful in computer science.

For over ten years, Carnegie Mellon University has been successful at enrolling, sustaining, and graduating women in computer science at a much higher rate than national averages. Here are six ways we made it happen.

In 2014, the incoming computer science (CS) class at CMU comprised 40% women at a time when the national rate for female CS graduates was around 14%. We set out on a ten-year long research endeavor to understand the story of how CMU got here. We tell that positive story in our new book, Kicking Butt in Computer Science: Women in Computing at Carnegie Mellon University, and here we’ll share the six primary takeaways that contributed to this success, which we believe are applicable to other organizations and workplaces.

1. Women do not need a “female-friendly” curriculum. Curriculum should depend on what we are trying to teach and learn, not on prioritizing one gender over another. Changes to improve the curriculum should be for the benefit of all students. Basing coursework on what people think interests women can perpetuate stereotypes. This approach can also be applied to the workplace. Women do not need “soft” or “female-friendly” roles -- career opportunities should be based on organizational needs, not on what we think we know about women.

2. Cultural change is the key. If the culture of a computer science program is dominated by “geeky stereotypical” archetype research shows that women and minorities (and even other white males) may feel excluded from the field. Data show that, in the case of CS, it is usually women and minorities and people with disabilities who are poorly represented. Efforts should be directed at being more inclusive of a wide range of personalities enabling all to have opportunities including leadership, visibility, encouragement, networking, mentorship, and advocacy. For example, in 1999, the CMU School of Computer Science dropped the programming admission prerequisite, resulting in a more diverse set of incoming students.

3. Culture can be changed at the micro level. Evidence for culture as the key also comes from other countries where girls are well represented in CS. In the US, there is a strong cultural belief that men and women are very different, so different that they are suited to different fields of study and careers. We need to change these perceptions and show that women can be successful in CS. We’ve witnessed cultural change within the CS department at CMU. For example, our student organizations, such as SCS4ALL and Women@SCS, promote diversity, which continues to be part of the larger CMU strategic plan.

4. Cultural factors are more important than gender differences. Men and women may not be so different after all. Our studies with CS majors at CMU show that men and women relate to computer science through a spectrum of attitudes and with more similarities than differences. Indeed, at CMU we’ve not seen the familiar, simplistic gender divide in attitudes to CS. We’ve seen similar attitudes even extend to identifying with the image of a “geek--” a word once shunned. In our studies, the only real gender difference centered around confidence levels, with men showing much higher rates of confidence than women. This is a cultural issue that reaches many areas, not just CS.

5. Institutional support is critical. Institutional support, such as administrative help, funding, and an explicit leadership vision, can signal the authorization and influence to show that diversity is an essential part of an organization’s value system. Support for the creation of a women’s group (or a group of shared ethnicity), can be valuable for building community and for increasing and sustaining the pipeline.

6. Success stories are important. Lots of people have documented the problem of low female enrollment in CS and women leaving the technology industry. But there is less sharing of the success stories. We need to hear more inspirational stories of success like CMU, including our approaches and recommendations. By showing more women how they might succeed in CS, we will help more programs -- and ultimately the profession -- become more inclusive.

Computer Science Education for All Students



Computer science education is a pathway to innovation, to creativity, and to exciting career prospects. No longer considered an optional skill, CS is quickly becoming a “new basic”, foundational for learning. In order for our students to be equipped for the world of tomorrow, we need to provide them with access to computer science education today.

At Google, we believe that all students deserve these opportunities. Today we join some of America’s leading companies, governors, and educators to support an open letter to Congress, asking for funding to provide every student in every school the opportunity to learn computer science. Google has long been committed to developing programs, resources, tools and community partnerships that make computer science engaging and accessible for all students.

We are strengthening that commitment today by announcing an additional investment of $10 million towards computer science education for 2017, along with the $23.5 million that we have allocated for 2016. This funding will allow us to build more resources, scale our programs, and provide additional support to our partners, with a goal of reaching an additional 5 million students.

With Congress’ help, we can ensure that every child has access to computer science education. Please join us by signing our online petition at www.change.org/computerscience.

Computer Science Education for All Students



(Cross-posted on the Google for Education Blog)

Computer science education is a pathway to innovation, to creativity, and to exciting career prospects. No longer considered an optional skill, CS is quickly becoming a “new basic”, foundational for learning. In order for our students to be equipped for the world of tomorrow, we need to provide them with access to computer science education today.

At Google, we believe that all students deserve these opportunities. Today we join some of America’s leading companies, governors, and educators to support an open letter to Congress, asking for funding to provide every student in every school the opportunity to learn computer science. Google has long been committed to developing programs, resources, tools and community partnerships that make computer science engaging and accessible for all students.

We are strengthening that commitment today by announcing an additional investment of $10 million towards computer science education for 2017, along with the $23.5 million that we have allocated for 2016. This funding will allow us to build more resources, scale our programs, and provide additional support to our partners, with a goal of reaching an additional 5 million students.

With Congress’ help, we can ensure that every child has access to computer science education. Please join us by signing our online petition at www.change.org/computerscience.

Celebrating RISE Awards Winners Who Are Helping Increase Diversity in CS Education



In communities around the world there are barriers preventing many students from learning computer science (CS). Anything from Internet access to biases about the nature and identity of computer scientists can keep a student from pursuing or attempting CS. Unfortunately, the barriers posed by unconscious bias can be the most damaging because they aren’t visible. Stereotypes reinforce a very limiting message about who can succeed in the field of CS. I know this to be true from my own experience when I was told as a young girl that computers were too expensive for me to “play around with.” Sure, I may have accidentally erased the hard drive, but I also figured out how to recover the data - and I learned from that mistake.

At Google, we believe it’s critical that more students have the ability to explore, tinker and even make mistakes with computers. We know that computer science is a tool for change, and we want to see more students become creators, not just consumers, of technology. That’s why we are so excited to announce $1.4M in grants to our latest group of RISE Award winners: 34 organizations in 16 countries that are working to increase access to CS education for groups who are currently underrepresented in the field.

These organizations are engaging girls, low income communities, and other minorities to make sure that CS is available for everyone. Techbridge is integrating the power of everyday role models into its CS programs, showing that you don’t need to be a CS graduate to influence a child; Laboratoria is helping bridge the gender gap in Peru’s tech industry by running a code academy for young women from Lima’s lower-income areas. Visit our site to see the full list of RISE awardees.
Many of our RISE awardees are filling in the gaps in access to formal CS learning, and our hope in supporting them is to to make CS accessible to all students. Since 2010, we’ve supported more than 250 organizations through RISE. The program will accept applications again this summer at g.co/riseawards, and we’re calling all eligible CS nonprofits to apply!

All of Google’s CS Education Programs and Tools in One Place



(Cross-posted on the Google Research Blog)

Interest in computer science education is growing rapidly; even the President of the United States has spoken of the importance of giving every student an opportunity to learn computer science. Google has been a supportive partner in these efforts by developing high-quality learning programs, educational tools and resources to advance new approaches in computer science education. To make it easier for all students and educators to access this information, today we’re launching a CS EDU website that specifically outlines our initiatives in CS education.
The President’s call to action is grounded in economic realities coupled with a lack of access and ongoing system inequities. There is an increasing need for computer science skills in the workforce, with the Bureau of Labor Statistics estimating that there will be more than 1.3 million job openings in computer and mathematical occupations by 2022. The majority of these jobs will require at least a Bachelor’s degree in Computer Science or in Information Technology, yet the U.S. is only producing 16,000 CS undergraduates per year.

One of the reasons there are so few computer science graduates is that too few students have the opportunity to study computer science in high school. Google’s research shows that only 25% of U.S. schools currently offer CS with programming or coding, despite the fact that 91% of parents want their children to learn computer science. In addition, schools with higher percentages of students living in households below the poverty line are even less likely to offer rigorous computer science courses.

Increasing access to computer science for all learners requires tremendous commitment from a wide range of stakeholders, and we strive to be a strong supportive partner of these efforts. Our new CS EDU website shows all the ways Google is working to address the need for improved access to high quality computer science learning in formal and informal education. Some current programs you’ll find there include:
  • CS First: providing more than 360,000 middle school students with an opportunity to create technology through free computer science clubs
  • Exploring Computational Thinking: sharing more than 130 lesson plans aligned to international standards for students aged 8 to 18
  • igniteCS: offering support and mentoring to address the retention problem in diverse student populations at the undergraduate level in more than 40 universities and counting
  • Blockly and other programming tools powering Code.org’s Hour of Code (2 million users)
  • Google’s Made with Code: movement that inspires millions of girls to learn to code and to see it as a means to pursue their dream careers (more than 10 million unique visitors)
  • ...and many more!
Computer science education is a pathway to innovation, to creativity and to exciting career opportunities, and Google believes that all students deserve these opportunities. That is why we are committed to developing programs, resources, tools and community partnerships that make computer science engaging and accessible for all students. With the launch of our CS EDU website, all of these programs are at your fingertips.

All of Google’s CS Education Programs and Tools in One Place



(Cross-posted on the Google for Education Blog)

Interest in computer science education is growing rapidly; even the President of the United States has spoken of the importance of giving every student an opportunity to learn computer science. Google has been a supportive partner in these efforts by developing high-quality learning programs, educational tools and resources to advance new approaches in computer science education. To make it easier for all students and educators to access this information, today we’re launching a CS EDU website that specifically outlines our initiatives in CS education.
The President’s call to action is grounded in economic realities coupled with a lack of access and ongoing system inequities. There is an increasing need for computer science skills in the workforce, with the Bureau of Labor Statistics estimating that there will be more than 1.3 million job openings in computer and mathematical occupations by 2022. The majority of these jobs will require at least a Bachelor’s degree in Computer Science or in Information Technology, yet the U.S. is only producing 16,000 CS undergraduates per year.

One of the reasons there are so few computer science graduates is that too few students have the opportunity to study computer science in high school. Google’s research shows that only 25% of U.S. schools currently offer CS with programming or coding, despite the fact that 91% of parents want their children to learn computer science. In addition, schools with higher percentages of students living in households below the poverty line are even less likely to offer rigorous computer science courses.

Increasing access to computer science for all learners requires tremendous commitment from a wide range of stakeholders, and we strive to be a strong supportive partner of these efforts. Our new CS EDU website shows all the ways Google is working to address the need for improved access to high quality computer science learning in formal and informal education. Some current programs you’ll find there include:

  • CS First: providing more than 360,000 middle school students with an opportunity to create technology through free computer science clubs
  • Exploring Computational Thinking: sharing more than 130 lesson plans aligned to international standards for students aged 8 to 18
  • igniteCS: offering support and mentoring to address the retention problem in diverse student populations at the undergraduate level in more than 40 universities and counting
  • Blockly and other programming tools powering Code.org’s Hour of Code (2 million users)
  • Google’s Made with Code: movement that inspires millions of girls to learn to code and to see it as a means to pursue their dream careers (more than 10 million unique visitors)
  • ...and many more!

Computer science education is a pathway to innovation, to creativity and to exciting career opportunities, and Google believes that all students deserve these opportunities. That is why we are committed to developing programs, resources, tools and community partnerships that make computer science engaging and accessible for all students. With the launch of our CS EDU website, all of these programs are at your fingertips.