Category Archives: Google Green Blog
Six Google data centers are diverting 100% of waste from landfill
Over the past few years we’ve started focusing downstream on what resources we’re generating via waste. We’ve been working towards zero waste to landfill at our facilities, as well as reducing the amount of waste we’re generating. Today, we are announcing a new commitment to achieve Zero Waste to Landfill for our global data center operations.
At Google, Zero Waste to Landfill means that when waste leaves our data centers, none of it goes to a landfill—100 percent is diverted to a more sustainable pathway, with no more than 10% of it going to a waste-to-energy facility, unless waste-to-energy can be proved more valuable than alternative diversion paths. Our approach is based off thestandard created by UL Environment who we partnered with to ensure the guidelines we created for our facilities were aligned and compliant with how UL defines and monitors the process.
Six of our 14 sites are achieving 100 percent diversion rates. Globally across our data center operations we are diverting at least 86 percent of waste away from landfills. At our operating data centers in Europe and APAC we have reached 100 percent diversion from landfill which currently includes a contribution from waste to energy of greater than 10 percent. These data centers include: Dublin, Ireland; Hamina, Finland; St Ghislain, Belgium; Changhua County, Taiwan and Singapore. As we continue to implement new diversion strategies and ways to design waste out altogether that percentage will decrease.
Our data center in Mayes County, Oklahoma is our first Google data center to reach Zero Waste to Landfill.
So, how did we get here, where have we had big successes? There have been a couple of themes for success. Find projects that do double duty—those that not only reduce or divert waste, but also have an added benefit, like energy savings or improved process efficiency. For example, our Mayes County data center has deployed compactors to help manage waste. Not only does it help divert waste more effectively, it also gives us accurate weight data for tracking, reduces the number of pick-ups our vendor has to make (saving us and them time and money) and is cleaner overall for the site (reducing how much janitorial work is needed).
Second, sometimes you don’t have to eliminate a waste stream or find a new diversion pathway to reduce the amount of waste, instead you can also look at extending it’s life—then you’re buying less and disposing of less. The same concepts we apply to server management, we apply to our maintenance operations to keep the data centers up and running.
Third, expect the unexpected, waste streams do not stay the same, they change and evolve over time depending on your operations. Be prepared for random new waste products and be flexible. Frequently the last 10 to 20 percent of waste diversion can be the hardest to solve, but understanding these processes is critical to success.
We’ve learned a lot along this journey and will continue to learn more—the effort certainly has not been wasteful. Zero waste to landfill requires a careful attention to the types of materials you’re generating and a deep understanding of your resource pathways. All these learnings allow us to keep pushing towards zero waste to landfill, but also to start looking upstream to add circular economy practices into our operations. Zero waste to landfill is just the first step in a long process to sustainably manage our resources throughout the entire lifecycle of our data centers.
Source: Energy & Environment
New Renewable Energy in Georgia Reduces Cost for All Customers
Last week, the Georgia Public Services Commission approved Georgia Power’s Integrated Resource Plan, a long-term planning tool that helps to guide the company’s development strategy. We’re pleased that as a result of efforts by Google and others, the plan calls for 1,500 megawatts (MW) of new renewable development for the state as well creation of an additional 200MW program for commercial and industrial customers who wish to buy renewables more directly.
This is a big deal for a region that is still in the early stages of scaling up opportunities for renewable energy. Our utility provider Georgia Power, responding to customer demand for wind, solar, and biomass, now has almost 2,000MW of renewables online in the state, and approval for an additional 1,500MW as a result of this IRP. This is a win for clean energy advocates and all Georgia Power customers, as the renewables coming online will only be authorized if they are cheaper than Georgia Power’s existing grid power, meaning that each MW of renewables coming online will reduce the cost of energy for all customers.
The 200MW C&I purchasing program is the result of urging by Google and a consortium of national and international businesses. We participated in the regulatory process to encourage Georgia Power to adopt more, cost effective renewables, and enable commercial and industrial customers to directly procure renewable power in the state. While the details of this program will need to be fleshed out and approved by the Georgia PSC, we are hopeful that this program will give companies like Google a scalable and sustainable way to source clean energy in Georgia. We look forward to continue working with Georgia Power, the PSC, and other stakeholders in the development of this program and share updates on our progress.
![]() |
Google Data Center in Douglas County, Georgia |
Source: Google Green Blog
New renewable energy in Georgia reduces cost for all customers
Source: Energy & Environment
New renewable energy in Georgia reduces cost for all customers
Last week, the Georgia Public Services Commission approved Georgia Power’s Integrated Resource Plan, a long-term planning tool that helps to guide the company’s development strategy. We’re pleased that as a result of efforts by Google and others, the plan calls for 1,500 megawatts (MW) of new renewable development for the state as well creation of an additional 200MW program for commercial and industrial customers who wish to buy renewables more directly.

The 200MW C&I purchasing program is the result of urging by Google and a consortium of national and international businesses. We participated in the regulatory process to encourage Georgia Power to adopt more, cost effective renewables, and enable commercial and industrial customers to directly procure renewable power in the state. While the details of this program will need to be fleshed out and approved by the Georgia PSC, we are hopeful that this program will give companies like Google a scalable and sustainable way to source clean energy in Georgia. We look forward to continue working with Georgia Power, the PSC, and other stakeholders in the development of this program and share updates on our progress.
Source: Energy & Environment
First solar-powered plane completes maiden round-the-world tour, setting 19 world records
Source: Energy & Environment
First solar-powered plane completes maiden round-the-world tour, setting 19 world records
Google helped build and host Solar Impulse’s digital presence, and on the first day of their round-the-world journey, we jointly launched the #FutureIsClean initiative, a platform to encourage the world to support the adoption of necessary clean technologies.

But commitment also comes through advocacy. That’s why in 2013, Google became the internet and technology partner of Solar Impulse: to raise awareness for what's possible with clean technology and renewable energy. Everybody could use the plane’s technologies on the ground to reduce our world’s energy consumption, save natural resources and improve our quality of life.
A global community formed to join the #FutureIsClean movement, following the progression of the Si2 during its travel around the world on www.solarimpulse.com, and tuning in for the pilot’s conversations with the Mission Control Center in Monaco (MCC). A virtual cockpit, built with the help of Google engineers and platforms, provided the telemetrics of Si2 (altitude, speed, battery level, equipment on board, etc.) and immersed children and supporters in the technical and human challenges that Solar Impulse embarked upon.
Today, we join the rest of the world in congratulating the Solar Impulse team for this outstanding accomplishment. Solar Impulse's pioneering spirit enabled them to push human boundaries and demonstrate that clean technologies can achieve goals we once thought were impossible.
Source: Energy & Environment
First solar-powered plane completes maiden round-the-world tour, setting 19 world records
Source: Google Green Blog
DeepMind AI reduces energy used for cooling Google data centers by 40%
Source: Energy & Environment
DeepMind AI reduces energy used for cooling Google data centers by 40%
- The equipment, how we operate that equipment, and the environment interact with each other in complex, nonlinear ways. Traditional formula-based engineering and human intuition often do not capture these interactions.
- The system cannot adapt quickly to internal or external changes (like the weather). This is because we cannot come up with rules and heuristics for every operating scenario.
- Each data center has a unique architecture and environment. A custom-tuned model for one system may not be applicable to another. Therefore, a general intelligence framework is needed to understand the data center’s interactions.
Google DeepMind graph showing results of machine learning test on power usage effectiveness in Google data centers |